عرضت على فاينمان منحة دراسية للالتحاق بكلية الدراسات العليا في هارفارد دون حتى أن يتقدم لها؛ لأنه كان قد فاز ب «مسابقة ويليام لويل بوتنام في الرياضيات» عام 1939. وكانت تلك أكثر مسابقات الرياضيات الوطنية المفتوحة أمام الطلاب الجامعيين أهمية وصعوبة، وكان ذلك العام هو عامها الثاني. وأذكر عندما كنت في المرحلة الجامعية أن أفضل الطلاب في الرياضيات كانوا ينضمون لفريق جامعتهم ويتدربون على حل المشكلات عدة أشهر قبل امتحان المسابقة. ولا أحد يحل جميع المشكلات في الامتحان، وفي سنوات عديدة يخفق عدد كبير من المشتركين في المسابقة في حل ولو مشكلة واحدة. وكان قسم الرياضيات في معهد ماساتشوستس للتكنولوجيا قد طلب من فاينمان الانضمام إلى فريق المعهد للمشاركة في المسابقة وهو في السنة النهائية، وكان الفارق بين درجات فاينمان ودرجات جميع المشاركين الآخرين في المسابقة من جميع أنحاء البلاد مذهلا للقائمين على الامتحان، ولذلك عرضت عليه جائزة منحة هارفارد الدراسية. وكان فاينمان فيما بعد يتظاهر أحيانا بالجهل بالرياضيات عند الحديث عن الفيزياء، ولكن درجاته في مسابقة بوتنام كانت تدل على أنه - كعالم رياضيات - قادر على منافسة أفضل علماء الرياضيات في العالم.
لكن فاينمان رفض عرض هارفارد؛ فقد قرر أنه يريد الالتحاق بجامعة برينستون، وأعتقد أن قراره كان راجعا للسبب نفسه الذي جعل العديد من الفيزيائيين الشبان يرغبون في الالتحاق بها وهو: أن أينشتاين كان هناك! وكانت برينستون قد قبلته وعرضت عليه وظيفة مساعد باحث مع يوجين ويجنر، الذي فاز بجائزة نوبل في المستقبل. ومن حسن حظه أن تم تعيينه بعد ذلك مع أستاذ مساعد شاب هو جون أرشيبالد ويلر، وهو رجل كان خياله مكافئا لبراعة فاينمان في الرياضيات.
وفي ذكرى فاينمان بعد وفاته، تذكر ويلر مناقشة دارت بين أعضاء لجنة القبول بالدراسات العليا في ربيع عام 1939، وخلالها تحدث أحد أعضاء اللجنة بحماس عن حقيقة أنه ما من شخص آخر من المتقدمين للجامعة حقق درجات قبول في الفيزياء والرياضيات تقترب من الدرجات المرتفعة للغاية التي حققها فاينمان (وكان قد حقق 100٪ في الفيزياء)، وفي الوقت نفسه تذمر عضو آخر من أعضاء اللجنة قائلا إنهم لم يقبلوا مطلقا من قبل طالبا حقق تلك الدرجات المتدنية للغاية في مادتي التاريخ واللغة الإنجليزية. ومن حسن حظ مستقبل العلم أن الفيزياء والرياضيات كانت لهما الغلبة.
ومن المثير للاهتمام أن ويلر لم يتحدث عن مسألة أساسية أخرى، ولعله لم يكن على دراية بها: وهي قضية ديانة فاينمان اليهودية. كان رئيس قسم الفيزياء في برينستون قد كتب إلى فيليب مورس بشأن فاينمان، حيث سأله عن انتمائه الديني، وأضاف: «ليست لدينا قاعدة محددة ضد اليهود، ولكن علينا أن نحافظ على نسبتهم في القسم صغيرة إلى حد معقول بسبب صعوبة تسكينهم.» وفي النهاية، تقرر أن فاينمان لم يكن يهوديا ملتزما «في سلوكه» إلى درجة تجعل هذا عقبة في الطريق. ولم تكن حقيقة أن فاينمان غير مهتم في الأساس بأمور الدين - شأنه في ذلك شأن العديد من العلماء - جزءا من المناقشة. •••
غير أن الحقيقة الأكثر أهمية من كل هذه التطورات الخارجية هي حقيقة أن فاينمان كان قد وصل الآن إلى مرحلة من مراحل تعليمه يمكنه فيها البدء في التفكير في الأمور المثيرة بحق؛ نعني بها تحديدا الفيزياء غير المنطقية وغير المفهومة. فالتطورات المتقدمة في العلم دائما ما تكون متناقضة ومتضاربة إلى حد ما، ومثل الكلاب البوليسية، يركز علماء الفيزياء العظماء على عناصر الغموض والتناقض تلك تحديدا لأنه فيها تكمن الجائزة الحقيقية.
كانت المشكلة التي قال فاينمان لاحقا إنه «وقع في غرامها» عندما كان طالبا بالجامعة تمثل جزءا مألوفا من أهم قضايا الفيزياء النظرية طوال ما يقرب من قرن، وهي: النظرية الكلاسيكية للكهرومغناطيسية. ومثل العديد من المشكلات العميقة، يمكن عرض المشكلة ببساطة. فالقوة العاملة بين شحنتين متشابهتين هي قوة تنافر؛ ولذا يتطلب الأمر شغلا لتقريب إحداهما من الأخرى. وكلما زاد قربهما احتاج الأمر إلى المزيد من الشغل. والآن تخيل إلكترونا منفردا؛ فكر فيه على أنه «كرة» ذات شحنة لها نصف قطر معين. وبهذا فإن جمع الشحنة كلها معا عند نصف القطر لتكوين الإلكترون يتطلب شغلا. والطاقة التي يصنعها الشغل أثناء جمع الشحنة معا تسمى عادة «الطاقة الذاتية» للإلكترون.
والمشكلة هي أننا لو قلصنا حجم الإلكترون وصولا إلى نقطة واحدة، فإن الطاقة الذاتية للإلكترون ستصل إلى ما لا نهاية؛ لأن الأمر يتطلب قدرا لانهائيا من الطاقة لجمع الشحنة كلها معا في نقطة واحدة. وكانت تلك المشكلة معروفة منذ فترة، ووضعت العديد من المخططات لحلها، ولكن كان أبسط هذه المخططات هو أن نفترض أن الإلكترون ليس محصورا حقا في نقطة واحدة، وإنما له حجم محدد.
غير أنه في وقت مبكر من القرن العشرين، اتخذت هذه المسألة منظورا مختلفا . فمع تطور ميكانيكا الكم، تغيرت صورة الإلكترونات، والمجالات الكهربائية والمغناطيسية تماما. فعلى سبيل المثال، تقول قاعدة ازدواجية الموجات والجسيمات، وهي جزء من نظرية الكم: إن كلا من الضوء والمادة - وهي الإلكترونات في هذه الحالة - تسلك في بعض الأحيان سلوك الجسيمات وتسلك في أحيان أخرى سلوك الموجات. ولكن مع تطور فهمنا لعالم الكم، في الوقت الذي زادت فيه غرابة هذا العالم أكثر وأكثر، اختفت بعض الألغاز الأساسية في الفيزياء الكلاسيكية، ولكن بقيت ألغاز أخرى بلا حلول، ومن بينها لغز الطاقة الذاتية للإلكترون. ولكي نضع هذا الأمر في سياقه السليم، نحن بحاجة لاستكشاف عالم الكم.
تتسم ميكانيكا الكم بسمتين أساسيتين، وكلتاهما تتحدى على نحو سافر حدسنا التقليدي بشأن العالم؛ السمة الأولى: هي أن الأجسام التي تسلك سلوكا ميكانيكيا كميا هي الأجسام الأساسية متعددة المهام؛ فهي قادرة على اتخاذ العديد من الأشكال المختلفة في نفس الوقت. ويتضمن هذا وجودها في أماكن مختلفة وأداء مهام مختلفة في وقت واحد. فعلى سبيل المثال، في حين يتصرف الإلكترون وكأنه يدور مغزليا نحو الأعلى، فإنه قادر أيضا على أن يتصرف وكأنه يدور في العديد من الاتجاهات المختلفة في الوقت نفسه.
إذا كان الإلكترون يتصرف وكأنه يدور مغزليا في عكس اتجاه عقارب الساعة حول محور يتجه من الأرض نحو الأعلى، نقول إن له «دورانا علويا». وإذا كان يدور في اتجاه عقارب الساعة، نقول إن له «دورانا سفليا». وفي أي لحظة معينة، يكون احتمال دوران الإلكترون لأعلى هو 50 بالمائة، واحتمال دورانه لأسفل هو 50 بالمائة. وإذا تصرفت الإلكترونات على النحو الذي يقترحه حدسنا التقليدي، فسيكون معنى هذا أن كل إلكترون نقيسه يدور لأعلى أو يدور لأسفل، وأننا سنجد 50 بالمائة من الإلكترونات في وضع واحد معين، وسنجد ال 50 بالمائة الأخرى في الوضع الآخر.
صفحة غير معروفة