فهذان الصنفان اللذان ذكرنا من اصناف العدد متقابلان بمنزلة شيين موضوعين فى الطرفين وفى وسط ما بينهما العدد الذى يقال له التام الذى ليست اجزاوه اذا جمعت بزايدة على كله ولا كله يزيد على جملة اجزايه لكنه ابدا مساو لاجزايه والمساوى هو فيما بين الزايد والناقص كما المعتدل بين المفرط والمقصر والمتساوى فى الصوت بين الاحد والاثقل فاذا كان العدد بالجملة عددا متى جمعت الاجزا التى يمكن ان تكون له واجملت فقيست اليه كانت غير رايدة عليه وكان هو غير زايد عليها قيل لذلك العدد العدد التام قولا على الحقيقة وهو مساو لجملة اجزايه مثل عدد الستة وعدد الثمانية والعشرين فان للستة نصفا وثلثا وسدسا وهى ثلثة واثنان وواحد واذا جمع ذلك كانت جملته ستة وذلك مساو للعدد الذى كان لنا اولا لا يزيد عليه ولا ينقص عنه واما عدد الثمانية وعشرين فان له من الاجزا النصف والربع والسبع وجزا من اربعة عشر وجزا من كح وهو يد ز د ب ا واذا اجملت فى جماعة واحدة كان منها عدد الثمانية والعشرين فلا تكون هذه الاجزا زايدة على جملة هذا العدد ولا جملته زايدة على اجزايه لكنهما متعادلان وهذه هى خاصة العدد التام وقد عرض ها هنا ايضا كما يعرض فى الاشيا المحمودة الفاضلة من انها عزيزة قليلة العدد وان الاشيا المرذولة الخسيسة الرذيلة كثيرة موجودة كذلك ايضا الاعداد الزايدة على التمام والناقصة توجد كثيرة غير لازمة للنظام وحسن التأليف فى ادراكنا لها واما الاعداد التامة فانها توجد قليلة العدد لازمة للنظام والترتيب وحسن التاليف الذى يجب فيها وذلك انه انما يوجد فى الاحاد عدد واحد تام فقط وهو الستة وانما يوجد بين العشرات عدد واحد اخر فقط وهو الثمانية والعشرون ويوجد العدد الثالث من الاعداد التامة واحدا فى الميين وهو عدد الاربعماية وستة وتسعين والعدد الرابع من هذه الاعداد فى حدود الالاف وهو الثمانية الاف وماية وثمانية وعشرين وهذه الاعداد التامة يتلو بعضها بعضا على لزوم منها لا نقصان فى عدد الستة وفى عدد الثمانية عدد هكذا وعدد هكذا وهذه الاعداد بالجملة ازواج
صفحه ۳۹